
Towards a Logic for
Inferring Properties of Event Streams?

Sean Kauffman1, Rajeev Joshi2, and Klaus Havelund2

1 University of Waterloo, Canada
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

Abstract. We outline the background, motivation, and requirements
of an approach to create abstractions of event streams, which are time-
tagged sequences of events generated by an executing software system.
Our work is motivated by the need to process event streams with mil-
lions of events that are generated by a spacecraft, that must be processed
quickly after they are received on the ground. Our approach involves
building a tool that adds hierarchical labels to a received event stream.
The labels add contextual information to the event stream, and thus
make it easier to build tools for visualizing and analyzing telemetry. We
describe a notation for writing hierarchical labeling rules; the notation is
based on a modification of Allen Logic, augmented with rule-definitions
and features for referring to data in data parameterized events. We il-
lustrate our notation and its use with an example.

1 Introduction

The most broadly applied approach to ensure functional correctness of software
systems is testing. That is, executing the software in a finite number of scenar-
ios and verifying the correct behavior. Various techniques have been developed
to improve the testing experience, including Runtime Verification (RV). RV is
a method for verifying that a program execution satisfies a user-provided for-
mal specification. Such specifications are typically expressed in some form of
temporal logic, regular expressions, or state machines. Occasionally, but more
rarely, they are expressed as rule systems and grammars. RV usually results in a
binary decision (true/false) as to whether the execution trace satisfies the spec-
ification, although variations on this theme have been developed. Logics have,
furthermore, been developed which aggregate data as part of the verification [4,
3, 2].

In this paper, we outline an approach to software comprehension. In software
comprehension, a user provides a specification that is used to annotate a given
event stream with contextual information that makes it easier to build tools
for visualizing and analyzing the trace. The proposed specification logic is a

? The research performed by the last two authors was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.



modification of Allen’s Temporal Logic (ATL) [1], well known from AI, which
turns out to be suitable for expressing hierarchical specifications of spacecraft
behavior. We have implemented our ideas in a system named nfer (a tool for
“telemetry inference”). The design of this logic is driven by the challenges faced
in operating spacecraft, where the only knowledge ground personnel have of
the remote behavior is from telemetry sent down to Earth. The nfer system
provides both a declarative notation that allows engineers to write hierarchical
specifications of spacecraft behavior, and a tool that uses these specifications
to automatically label a received telemetry stream. The labels are used both in
visualizing telemetry in real-time as it is received, as well as for building tools
that make it easier to query past telemetry. We have built a prototype version
of our tool for analyzing telemetry received from the Curiosity rover currently
on Mars [6].

The work is a continuation and refinement of previous work described in [5].
Roşu and Bensalem [7] define a translation of a modified ATL to Linear Tempo-
ral Logic (LTL) for monitoring, realizing, however, that a specialized monitoring
algorithm is more efficient. Our work differs in a number of respects: (i) instead
of monitoring ATL relationships for verification, we generate a relationship hier-
archy for program understanding, (ii) we handle parameterized intervals, (iii) we
allow any constraints on time and parameter values, not just the 13 ATL con-
straints, (iv) in their system, an interval is unique, while in nfer it can occur
multiple times. Our work has strong similarities to data-flow (data streaming)
languages. A very recent example is QRE [2], which is based on regular ex-
pressions, and offers a solution for computing numeric results from traces. QRE
offers a limited set of numeric operations, such as sum, difference, minimum,
maximum, and average, in order to achieve linear time (in the length of the
trace) performance. Our approach is instead based on Allen logic, and instead of
numeric results produces named intervals, useful for visualization (and thereby
systems comprehension).

The remaining contents of the paper are as follows. Section 2 outlines the
background as well as requirements for this effort, including an example. Section
3 suggests a solution and uses it to formalize the provided example. Finally,
Section 4 concludes the paper.

2 Requirements

In this section we briefly outline the requirements to our specification language.
We first illustrate a concrete problem with an example. Subsequently we outline
the specific requirements.

2.1 Illustrating Example

Consider the trace shown in Figure 1(a), that we assume has been generated by
a spacecraft3. The trace consists of a sequence of events, or Event Verification

3 The trace is artificially constructed to have no resemblance to real artifacts.



Records (EVRs), each with a name, and list of parameters, including a time
stamp. This sequence of 15 events is already too long for human comprehension,
even if we provide the following informal description of how to read the trace:

– A session consists of a boot and a window.
– A boot starts with a VERSION, terminates with a DEACTIVATE, and must

contain a BOOT COUNT.
– A window starts with a prep, followed by an active, followed by a cleanup,

and must contain an ACTIVATE SEQ.
– A prep starts with a WINDOW PREP and terminates with a DUR1.
– An active starts with a task1, followed by a task2, followed by a task3.
– A task1 starts with a DUR1 and terminates with a DUR2.
– A task2 starts with a DUR2 and terminates with a DUR3.
– A task3 starts with a DUR3 and terminates with a FINISHED.
– A cleanup starts with a FINISHED and terminates with a CLEANUP.

Our objective is to formalize the above information in a specification, match
the specification against the trace, and convey the actual matches in a visually
appealing manner. We are not interested in whether the trace satisfies the above
information exactly, but rather to what extent it matches. The result could
for example be the visualization shown in Figure 1(b). As can be seen, the
visualization clearly shows how a session consists of a boot and a window, which
itself consist of a prep, active and cleanup, and where an active consists of the
three tasks executed in sequence.

SLEEP(07:12:02)
VERSION(09:23:10,10.2.1)
BOOT_COUNT(09:23:16,12)
REPORT(09:23:18)
DEACTIVATE(09:23:30)
WINDOW_PREP(09:29:59,782,25,2)
ACTIVATE_SEQ(09:59:12,2)
OK(10:04:59)
DUR1(10:05:05)
RESET(10:05:06)
DUR2(10:05:21)
DUR3(10:07:03)
STORING(10:16:48)
FINISHED(10:17:04)
CLEANUP(10:20:05)

(a) A trace of events (b) Visualization of the trace

Fig. 1. An event trace and its visualization

2.2 Desired Features

The specification language should allow a user to:

1. label event relations in the trace, for example to define the label task1 as an
episode delimited by the events DUR1 and DUR2.



2. define higher-level labels as a composition of lower-level labels. For example,
a session is composed of a boot and a window in sequence.

3. refer to time stamps associated to events in the trace, as well as generate
and read start and end times of generated labels.

4. refer to other data associated with events, as well as generate and read data
of generated labels using arbitrary expressions. For example, a label can have
a datum value defined by the sum of two lower-level event data.

5. specify other relationships than that one event/labeling occurs before an-
other. For example it should be possible to specify that one label contains
another, that two labels overlap, etc.

3 Outline of a Logic

Our logic is inspired by ATL [1], specifically its operators for expressing temporal
constraints on time intervals. In ATL, a time interval represents an action taking
place over a time period (e.g. “Drive”), or a system state over a time period (e.g.
“Overheated”). A time interval has a name, a start time, and an end time.

ATL offers 13 mutually exclusive binary relations. Examples are: Before(i, j)
which holds iff interval i ends before interval j, and During(i, j) which holds iff
i starts strictly after j starts and ends before or when j ends (or vice versa). An
ATL formula is a conjunction4 of such relationships, for example, Before(A,B) ∧
Contains(B,C). A model is a set of intervals satisfying such a conjunction of
constraints. ATL is typically used for generating a model (plan) from a formula
(planning), but can also be used for checking a model against a formula, as
described in [7].

Operator ⊕ Name Explanation

A ;B A before B A ends before B starts
A : B A meet B A ends where B starts
A v B A during B all of A occurs during B
A = B A coincide B A and B occur at the exact same time
A ` B A start B A starts at the same time as B
A a B A finish B A finishes at the same time as B
A + B A join B an A and a B with no constraint
A |B A overlap B A and B overlap in time
A uB A slice B A and B overlap in time

and only overlap is returned

Table 1. nfer operators

Our objective is different from planning and verification. Given a trace, we
want to generate a model (a set of intervals), guided by a specification that we

4 A limited form of disjunction is also allowed but not described here.



provide, that represents a layered view of the trace. Let an interval be defined as
a 4-tuple (η, t1, t2,m) consisting of a name η, and a start time t1, an end time t2,
and a map m : Id→ V from identifiers to values, the arguments of the interval.
The input to our system is a trace σ: a sequence of events of the form η(t,m)
consisting of a name η, a time unique stamp t, and a map m. The initial model
is the set {(η, t, t,m) | N(t,m) ∈ σ}. The specification is a set of rules of the
form:

η
.
= η1(m1) ⊕ η2(m2) if C map M

session ← boot ; window .

boot ← VERSION ; BOOT COUNT(2 : count) ; DEACTIVATE
if count > 10 map {boot count : count} .

window ← ACTIVATE SEQ(2 : x) v(prep(m) ; active ; cleanup)
map m † {seq : x} .

prep ← WINDOW PREP(3 :wi, 4 : ty) ; DUR1

map {wid : wi, type : ty} .

active ← task1; task2; task3.
task1← DUR1; DUR2.
task2← DUR2; DUR3.
task3← DUR3; FINISHED .
cleanup ← FINISHED ; CLEANUP .

Fig. 2. Example specification

The rule states that: if there are two intervals named η1 respectively η2 already
generated, with maps specified by m1 and m2 respectively (see example), that
are related time-wise with the temporal operator ⊕, and if the condition C holds
on the maps of the respective intervals (true if left out in abbreviated form)5,
then an interval named η is generated, with the map described by the map
expression M (the empty map if left out in abbreviated form). The operators
are those presented informally in Table 1, which are inspired by ATL, although
not identical, since our needs are slightly different. Each operator on two intervals
A and B returns an interval that contains both intervals in their entirety (the

5 In the fully generic form the user can define his/her own operators as arbitrary
predicates on time stamps.



maximal view), except for the last slice operator A uB, which returns only the
interval (slice) which A and B have in common (the minimal view).

As convenient syntax we allow expressions containing several operators on
the right hand side of a rule, but such derived rules map to the simple form
above. The specification of our trace abstraction outlined in Section 2 is shown
in Figure 2. A term such as BOOT COUNT (2 : count) means matching a
BOOT COUNT event where the second map argument is bound to the free
variable count, and the expression m † {seq : x} is the map m overridden by seq
being mapped to x.

4 Conclusion

We have introduced the problem of inferring a model from an event stream,
guided by a formal specification, for the purpose of system comprehension.
We have outlined a rule-based logic, nfer, influenced by Allen Temporal Logic
(ATL), for writing specifications. ATL itself is an attractive logic due to its sim-
plicity, as well as naturalness for visualization, and is normally used for planning
purposes. nfer adds rule-definitions as well as data parameterization to a vari-
ant of this logical system. A prototype of nfer has been implemented in Scala as
an internal DSL (API), and is built on a publish and subscribe framework, for
processing telemetry data from the Mars Curiosity rover. Future work includes
refining the implementation, including optimizing time and space; improving the
internal rule DSL; creating an external DSL; and allowing rules to be written in
other languages, such as Python, commonly used by flight mission engineers.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Programming Languages and Systems - 25th Eu-
ropean Symposium on Programming, ESOP 2016, Eindhoven, The Netherlands.
LNCS, vol. 9632, pp. 15–40. Springer (April 2016)

3. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monpoly: Monitoring usage-
control policies. In: Runtime Verification. pp. 360–364. Springer (2011)

4. Finkbeiner, B., Manna, Z., Sipma, H.B.: Deductive verification of modular systems.
In: Compositionality: The Significant Difference, pp. 239–275. Springer (1998)

5. Havelund, K., Joshi, R.: Comprehension of spacecraft telemetry using hierarchical
specifications of behavior. In: 16th International Conference on Formal Engineer-
ing Methods (ICFEM), Luxembourg. LNCS, vol. 8829, pp. 187–202. Springer (Nov
2014)

6. Mars Science Laboratory (MSL) mission website: http://mars.jpl.nasa.gov/msl.
7. Rosu, G., Bensalem, S.: Allen linear (interval) temporal logic - translation to ltl and

monitor synthesis. In: CAV (2006)


